Article 3213

Title of the article

ON THE STABILITY CRITERIA OF SOLUTIONS OF PARTIAL
DIFFERENTIAL EQUATIONS OF HYPERBOLIC TYPE 

Authors

Boykov Il'ya Vladimirovich, Doctor of physical and mathematical sciences, professor, head of sub-department of higher and applied mathematics, Penza State University (Penza, 40 Krasnaya str.), math@pnzgu.ru
Ryazantsev Vladimir Andreevich, Postgraduate student,Penza State University(Penza, 40 Krasnaya str.),math@pnzgu.ru 

Index UDK

517.9 

Abstract

The paper is dedicated to the analysis of Liapunov stability of solutions of systems of linear partial differential equations of hyperbolic type with timedepending coefficients. Investigation of stability is based on the use of Fourier transformation in space variables for the transition from original problem to parametric system of ordinary differentials equations in spectral domain, and the further analysis of solutions of the system with the use of Liapunov transformations and logarithmic norms. An algorithm that enables to obtain criteria of stability of solutions of finite systems of linear hyperbolic equations with time-depending coefficients has been proposed, and also several examples of application of the algorithm for the investigation of stability of solutions of hyperbolic equation and of the system of hyperbolic equations with constant coefficients have been given. The devised algorithm can be used for investigation of dynamical systems that are governed by systems of hyperbolic equations. 

Key words

Liapunov stability, hyperbolic equations, Liapunov transformation, logarithmic norm. 

Download PDF
References

1. Kreyn S. G., Khazan M. I. Itogi nauki i tekhniki. Matematicheskiy analiz [Science and technology results. Mathematical analysis]. Moscow: VINITI, 1983, vol. 21, pp. 130– 264.
2. Sirazetdinov T. K. Ustoychivost' sistem s raspredelennymi parametrami [Stability of distributed parameter system]. Moscow: Nauka, 1987, 232 p.
3. Khenri D. Geometricheskaya teoriya polulineynykh parabolicheskikh uravneniy [Geometric theory of semilinear parabolic equations]. Moscow: Mir, 1985, 376 p.
4. Shestakov A. A. Obobshchennyy pryamoy metod Lyapunova dlya sistem s raspredelennymi parametrami [Generalized direct Lyapunov’s method for distributed parameter systems]. Moscow: Nauka, 1990, 320 p.
5. Boykov I. V., Ryazantsev V. A. Izvestiya vysshikh uchebnykh zavedeniy. Povolzhskiy region. Fiziko-matematicheskie nauki [University proceedings. Volga region. Physics and mathematics sciences]. 2012, no. 4, pp. 84–100.
6. Boykov I. V. Ustoychivost' resheniy differentsial'nykh uravneniy [Stability of differential eqations’ solutions]. Penza: Izd-vo Penz. gos. un-ta, 2008, 244 p.
7. Daletskiy Yu. L., Kreyn M. G. Ustoychivost' resheniy differentsial'nykh uravneniy v banakhovom prostranstve [Stability of differential eqations’ solutions in Banach space]. Moscow: Nauka, 1970, 536 p.
8. Dekker K., Verver Ya. Ustoychivost' metodov Runge-Kutty dlya zhestkikh nelineynykh differentsial'nykh uravneniy [Stability of Runge-Kutta methods for rigid non-linear defferential equation]. Moscow: Mir,1988,334 p.
9. Gantmakher F. R. Teoriya matrits [Matrix theory]. Moscow: Fizmatlit, 2010, 560 p.

 

Дата создания: 27.01.2014 10:55
Дата обновления: 21.07.2014 08:33